If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13n^2-16n-17=0
a = 13; b = -16; c = -17;
Δ = b2-4ac
Δ = -162-4·13·(-17)
Δ = 1140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1140}=\sqrt{4*285}=\sqrt{4}*\sqrt{285}=2\sqrt{285}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{285}}{2*13}=\frac{16-2\sqrt{285}}{26} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{285}}{2*13}=\frac{16+2\sqrt{285}}{26} $
| -6m-11=100 | | -12m-15=75 | | 5=9x-58 | | 2^x*2^(x+1)=10 | | (2^x)*2^(x+1)=10 | | (2^x)*2^x+1=10 | | 11-29=-6x | | 2^x*2^x+1=10 | | 9x=-40+85 | | 5^2x+4=5^x+1 | | 3a^2-9a-84=0 | | 16/2a=-8 | | 2x/8-x/10=19 | | (1+x)^8=1.8 | | (3y2+14)(3y2–14)=0 | | 4x^2-5+8x=0 | | 4(x•3)=180/3 | | 12x+25-35=14X+22X-2 | | (X+1)÷5=x÷10 | | 25(x+4)÷5=21×8÷7 | | X+5=2-3x+12 | | 12x^2+24x-96=0 | | x/1.5/3=x/12 | | x/9-8=-1 | | 4d*2(4d+7=-106 | | 4d+2(4d+7=106 | | -43=5c+4(2c+7) | | 1100t=16t^2 | | 5^9x=2.6 | | X²+5x-6=0 | | 5/4+1/5=-5/3x+3/4x | | 29/20=-11/12x |